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The numerical solution of three problems of supersonic flow about conical bodies at 
zero and nonzero angles of attack is given. 

The general&d method of integral relations is developed for calculating perfect gas 
flow about a cone at an angle of attack. The shock layer is subdivided into nonoverlapping 
strips by means of a number of rays and approximations by trigonometric polynomials 
with respect to the corresponding variable are carried out. The approximating system 
is integrated along these rays, starting from the shock wave, the coordinates of which 
are determined according to the condition of vanishing normal velocity on the body. 

Supersonic flow about cones in the presence of an exothermal combustion reaction 
is analyzed. The two-component model is considered, in which the kinetics is described 
by a single concentration of unreacted molecules. The gas is assumed to be perfect with 
averaged thermodynamic properties, and direct and inverse reactions are taken into 
account after an induction delay time. In the general three-dimensional case the angular 
variable connected with the cross flow is eliminated from the governing system with 
the aid of trigonometric interpolations. The integration of the two-dimensional ap- 
proximating system in all the meridian planes of interpolation is carried out by the 
numerical method of characteristics with a network of inverse type.. 

This characteristic computational scheme using two-dimensional compatibility 
relations is extended to the case of three-dimensional supersonic flows with nonequi- 
librium chemical processes, taking into account exact kinetics. The flow about blunt-nose 
inverted cones at an angle of attack in a supersonic stream of nonequilibrium dissociating 
oxygen is investigated. 

Conical surfaces are among the most widely used components for the construc- 
tion of aerodynamic shapes flying at supersonic velocities. Hence the investigation 
of supersonic flows about conical bodies is a very important question, and it can 
be carried out effectively with the help of numerical methods. In this investigation 
we consider a number of different, stationary problems, namely such as the calcula- 
tion of supersonic nonaxisymmetrical conical flow of a perfect gas, of the combus- 
tion in a supersonic stream flowing past conical bodies, and of the flow about 
blunt-nose inverted cones at angles of attack in the presence of nonequilibrium 
dissociation. In all these cases the gas is supposed to be inviscid and nonheat- 
conducting. 
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I. THE CONE AT ANGLES OF ATTACK 
INASUPERSOMC STREAMOFAPERFECT GAS 

In calculating perfect gas flows about conical bodies at angles of attack, different 
authors have applied various numerical methods-the method of integral relations, 
the finite-difference method, and the method of straight lines in combination with 
the method of characteristics. The tables [l] of gasdynamic functions for circular 
cones at angles of attack have been computed by the finite-difference method. 
The first numerical solution of the direct problem of supersonic nonaxisymmetri- 
cal flow about conical bodies was obtained by the method of integral relations [2], 
where a scheme involving approximations across a shock layer was used. Another 
scheme of the method of integral relations involving approximations along a shock 
layer was proposed [3] (see also [4]). A practical realization of the last scheme is 
described here. 

We confine ourselves to the case of flow with a plane of symmetry parallel to 
the free-stream velocity vector. A spherical polar coordinate system r, 6,# with the 
pole at the apex of the cone is used; the angle 8 is measured from a fixed axis 
inside the body and the angle # from the windward side. Instead of 6 we shall 
introduce a normalized variable 

5 = [e - 44h1~~~d~~ - 444)i, 
where 8 = e,($) and 8 = Or&S) are the equations of the traces of the body and 
shock wave on a sphere. 

The system of equations of stationary conical flow of a perfect gas (see, for 
instance, [2]) is represented in general divergence form as follows 

where the subscript i = 1,2,3,4 refers, respectively, to the momentum equations 
in the 6 and # directions, to the continuity equation and to the entropy equation. 
Here Pt , Qi , J2i are definite functions of the independent variables and of the 
basic gasdynamic functions-the components of the velocity vector V, the pressure 
p, the density p and the entropy 

s = (Y - I)-’ w4P’), 

where y is the ratio of specific heats. Instead of the momentum equation in the r 
direction we shall use Bernoulli’s integral. 

The generalized method of integral relations will be applied to the solution of the 
problem. In the N-th approximation the region of integration 0 < 5 < 1,O < 1,5 Q r 
is subdivided into N nonoverlapping strips with the help of rays 

t/s = a)* = m/N (n = 0, l,..., N). 
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Keeping in mind the symmetry with respect to #, we multiply each of the equations 
(1) by sin n# or cos n#. Then integrating with respect to $ we form the following 
4N integral relations 

i = 1, 3, n = 0, I,..., N; i = 4, n = 0, l,..., N - 2, 

n = 1, 2 ,..., N - 1. 

The odd functions 3 and even functions # in the integral relations are approxi- 
mated by trigonometric polynomials with respect to 4, which have interpolation 
nodes on all the rays #I = #,, , i.e., 

N-l N-l 

(2) 

n-0 j-0 

where caj and d,,, are numerical coefficients. 
Using these integral relations we obtain an approximating system of ordinary 

differential equations in 6, which can be solved with respect to the 4N values of the 
derivatives dP,,/df on all the rays I/ = 4, in the form 

2 = Qi, + f KiJQgj , 
dP. 
d4 i=O 

i= 1,3, n = 0, l,..., N, i = 2, 4, n = 1, 2 ,..., N - 1, 

where Ki,,* are numerical coefficients. 
As basic unknown functions we shall take the values of the velocity component 

w  in the # direction, the entropy S, the pressure p, the function P3 on the rays 
# = t,b,(n = 0, l,...N). The function P3 is determined by the following expression 

Pa = p v sin 0 - 
I w[q$- $$-) ++]I, 

where v is the velocity component in the 8 direction. 
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Taking into account the conditions of symmetry we have w  = 0 on the rays 
# = 0 and # = n, and, in addition, the values of the entropy are constant on these 
rays and equal to their values immediately behind the shock wave. Therefore the 
total number of basic unknown functions will be 4N, and the corresponding equa- 
tions for the determination of the abovementioned unknown functions can be 
deduced from the 4N equations (3). 

The resulting equations are integrated numerically with respect to 6 proceeding 
along the N + 1 rays # = t,& from the shock wave (5 = 1) to the body (6 = 0). 
In the N-th approximation we must find those values of the angle 8, on all the 
N + 1 rays, which satisfy the condition of vanishing normal velocity V, at the 
corresponding points on the cone surface. This condition is reduced to the equality 
P, = pVy = 0. The equation of the shock wave is represented by the interpolation 
trigonometric polynomial in accordance with the assumed values BW. Then all the 
gasdynamic functions on the shock wave are found by known relations (see [2]). 

It should be noted that on the cone surface the derivatives dw/df and dS/df as 
given’ by the approximating system become infinite, while the derivatives dp/d.!j and 
dPJd( have no singularity there. The same properties are obtained in the analytical 
investigation of the exact equations of conical flows. 

To illustrate the above numerical scheme we shall present some calculated 
results concerning the circular cone 0, = 20” in an air stream (y = 1.4) at Mach 
number M, = 7 and various angles of attack, LX = 5”, lo”, 15”. The numerical 

FIG. 1. Shape of shock wave for cone at angles of attack in supersonic stream of perfect gas. 
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solution was computed using different approximations in the method of integral 
relations. The results are shown in the graphs by circles for N = 3 and by solid 
lines for N = 4. For comparison data from the tables [I ] as calculated by a finite- 
difference method are also displayed here (marked by crosses in the graphs). 

Fig. 1, where the curve f? = &($) is plotted, gives the form of the shock wave. 
It can be seen from this graph that one sensitive detail of the flow-the maximum 
of this curve near the leeward side of the body-was already determined with 
sufficiently good accuracy in the approximation N = 4. Fig. 2 shows how the 
dimensionless pressure (referred to p,a& , where pa is the free-stream density, ucr 
is the critical velocity of sound), changes along the cone surface. The results 
presented demonstrate that in the cases calculated, practical accuracy is achieved 
for N = 4. 

Pa 
2-- 

FIG. 2. 

i I - 
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Pressure distribution on cone at angles of attack in supersonic stream of perfe@ &as. 

II. THE ch4BUSTION IN A !!hJPJBSONIC STREAM PAST A CONE 

For stationary supersonic flow about conical bodies in the presence of non- 
equilibrium combustion reactions, the problem becomes nonselfsimilar and de- 
pends on two or three space variables in the cases of or and nonzero angles 
of attack, respectively. We now consider the problem of calculation of supersonic 
flow of a combustible gas about a body when an exothermal reaction takes 
place behind the shock wave. 

As is well-known, the process of combustion for hydrogen-air mixtures consists 
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of two stages. At first, during the period characterized by an induction delay time, 
the reactions proceed without any heat release. Subsequently, the reactions have 
a thermal effect. For a hydrogen-air mixture it is advisable to introduce some sim- 
plified models of the combustion kinetics, which prove to be quite reliable. 

We shall assume a two-component model in which the initial mixture and the 
products of its combustion are considered, but the kinetics of the exothermal 
reaction are described by a single variable c-the mass concentration of unreacted 
molecules. The gas is supposed to be perfect, but it has averaged thermodynamic 
properties (the ratio of specific heats y and the molecular weight r)) depending on c. 
The investigation of combustion in supersonic flows about different bodies has 
been carried out on the basis of such a model [5,6]. 

In this case the system of gas dynamics equations will be 

v*pv=o, p(VV) 8+ vp = 0, pVVh- v.Vp=O. (4) 

The equation of state and the expression for the enthalpy h should be added to (4), 
namely 

P=;PT, h= -+; + qc, 

where R is the universal gas constant, T is the temperature, q is the heat release per 
unit mass of combustible mixture. 

The concentration c will be found from a kinetic equation taking into account 
simultaneously the direct reaction (combustion) and the inverse reaction (recom- 
bination), having the following general form 

dc 
dt= 

-k,cmpz exp (- &) + k2(l - c)“p” exp (- q). (6) 

Here kI and k2 are constants of the reaction rate, E is the activation energy, m is the 
order of the reaction, I and n are exponents. 

The induction delay time can be expressed by the formula 

ha = jjki exp (- -&, 

where k and E1 are positive constants. We shall introduce the fraction of induction 
delay time ‘p, to be described by the following equation 
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In the zone of induction 0 < q~ < 1 (it is obvious that on the boundary of 
ignition Q) = 1) we have c = 1, q = 0 and the flow is adiabatic. 

The governing system of Eqs. (4)-(S) in the general three-dimensional case will 
be given in cylindrical coordinates x, r, #, with the body given by the equation 
r = rs(x, $). The shock wave is an adiabatic discontinuity surface for which the 
well-known Rankine-Hugoniot relations hold and where the concentration c = 1. 

Using the normalized variable 5 = (r - rB)/(rw - re), we shall compute the 
solution on successive layers which are perpendicular to the body axis. Each layer 
is represented as a plane # = const with fixed nodal points formed by the inter- 
section of a series of surfaces 6 = const and 4 = const. We shall eliminate the 
derivatives with respect to $ from the governing system of equations in the variables 
#, I, # by applying the trigonometric approximations of type (2). The resulting 
approximating system of differential equations in the variables $ and 5 defines the 
values of the basic unknown functions on all the meridian planes of interpolation 
q4 = const. 

Under certain supersonic conditions, this approximating system is hyperbolic, 
possessing in each meridian plane two families of characteristics and one family of 
lines, analogues to stream lines. Therefore, the numerical method of characteristics 
may be applied to the integration of this approximating system. Here we use an 
implicit computational scheme of second-order accuracy, developed in [7-lo], 
based on the projection of characteristics from the nodal points on the layer to be 
calculated, towards the previous, known layer. The computational algorithms of 

radius 

c 

400-- 

FIG. 3. Shock wave and ignition boundary for combustion in supersonic flow about cone at 
zero angle of attack. 
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this scheme in&de iterations and interpolations. This scheme is valid, naturally, 
both in the particular case of axisymmetric flow and in the general case of three- 
dimensional flow about nonconical bodies. 

The calculations of supersonic flow about cones in the presence of an exothermal 
combustion reaction have been carried out for a stoichiometric hydrogen-air mix- 
ture. In Figs. 3-6 are shown some numerical results for a circular cone with semi- 
apex angle 0, = 30”. The free-stream has the following parameters-the Mach 
number M, = 5, the angle of attack OL = 0”, the temperature T, = 685”K, the 
pressure pm = 1 atm. All the data are given in dimensionless form, assuming as 
reference quantities the free-stream density pm , the critical velocity of sound 
a - 1380 m/set and the induction delay time find = 0.52 x lo* sec. cr - 

FIG. 4. Distributions of concentration, temperature, and pressure on cone for combustion 
in supersonic stream at zero angle of attack. 

The shock wave (solid line) and the boundary of ignition (dashed line) are plotted 
in Fig. 3. In the process of combustion the shock wave increases its inclination, 
thus the pressure and the temperature behind it also increase and the induction 
delay time diminishes. As a result, the boundary of ignition approaches the shock 
wave; in this case the normal velocity component behind the shock wave continues 
to be subsonic. 

The distribution of physical parameters--the concentration c, the temperature 
T/T, and the pressure p-along the cone surface are shown in Fig. 4. Immediately 
after the induction period, the development of the combustion is very intense, 
being accompanied by a significant increase in temperature, and subsequently the 
process of combustion slows down. The concentration c on the cone surface 
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decreases quickly, tending to a value at which the direct and inverse reactions are 
in equilibrium. The pressure along the body increases at first, reaching an insignifi- 
cant maximum. In the computations, some oscillations depending on the activation 
energy were observed in the flow at increasing $. 

FIG. 5. Concentration distribution across shock layer for combustion in supersonic flow 
about cone at zero angle of attack. 

FIG. 6. Temperature distribution across shock layer for combustion in supersonic flow about 
cone at zero angle of attack. 
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The structure of the combustion zone is illustrated by Figs. 5 and 6, where the 
distributions of mass concentration and of temperature between the cone surface 
and the shock wave are presented for a series values of I/I. When crossing the 
boundary of ignition the flow parameters have discontinuities of their derivatives. 
Equilibrium is established at first near the body surface, while near the shock wave 
there is nonequilibrium flow. It is interesting that the maximum temperature before 
equilibrium occurs on the body, and later on the maximum temperature is inside 
the flow-field. It should be noted that the pressure reaches its maximum value at the 
boundary of ignition behind which a rarefaction wave is present. 

The numerical analysis of combustion of a hydrogen-air mixture in the flow 
about a cone at angles of attack was also carried out. The effect of heat release on 
three-dimensional flow, in principle, is the same as in the case of zero angle of 
attack. However, the process of combustion on the windward side (# = O”), 
where the pressure and the temperature are higher, proceeds more intensively than 
on the leeward side (4 = 180”). In this case the maximum schock layer thickness 
in a plane x = const takes place inside the region 0” -=c $J < 180”. 

For illustration, some numerical results are presented for the cone with the 
semiapex angle 0, = 30”, and for the following free-stream parameters: the angle 
of attack 01 = lo”, the Mach number M, = 7, the temperature T, = 4OO”K, and 
the pressure p = I atm. The surface distributions of concentration (solid tine) and 
of temperature (dashed line) versus the variable IJ are shown in Fig. 7. The surface 
distributions of the same functions versus the variable $ are drawn in Figs. 8 and 9. 

C 

10 i 

a5 

c 

FIG. 7. Distribution of concentration and temperature on cone for combustion in supersonic 
flow at angle of attack. 
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FIG. 8. Concentration distribution on cone for combustion in supersonic flow at angle of attack. 

4' - 
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FIG. 9. Temperature distribution on cone for combustion in supersonic flow at angle of attack. 

III. THE BLUNT-NOSE INVERTED CONE IN A SVPERSONIC STREAM 
OF NONEQUILIBRIUM DISSOCIATING OXYGEN 

The above model of combustion kinetics permits us to clear up the principal 
features and the distributions of physical parameters in nonequilibrium streams. 
However, it is interesting to calculate supersonic two-dimensional and three- 
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dimensional flows of a nonperfect gas, taking into account the exact kinetics 
involving reactions with finite rates. 

For such a problem Eqs. (4) hold again, but now the equation of state and the 
expression for the enthalpy must be considered in the general form 

P = AP, T, cl ,..., cm), h = h(p, T, cl ,..., cm), (9) 

where ci is the mass concentration of the i-th component of the gas medium 
(i = 1, 2,..., m), m is the number of components. 

The rate of change of concentration of the i-th component due to all the 1 chemi- 
cal reactions will be expressed by the following general equation 

2 = 2 dp, T, cl ,..., c,)fij(p, T, cl ,..., cm). 

Here the function Qij is proportional to the rate of the j-th chemical reaction. The 
concrete forms of the expressions (9) and (10) are given by chemical kinetics. 

In order to solve the problem of nonequilibrium supersonic gas flow, the govern- 
ing system (4), (9), (10) is integrated numerically with the aid of the characteristic 
computational scheme described in the preceding section and developed in detail 
in [g-lo]. 

As we approach equilibrium conditions qij -+ co and hj + 0 in the kinetic 
equations. This fact can lead to an instability in the numerical solution. Usually 
computational schemes of an implicit type are applied to avoid these difficulties. A 
special implicit computational scheme of second-order accuracy was worked out 
in [g-lo] for the stable numerical integration of kinetic equations (10) in the case 
of three-dimensional supersonic flows close to equilibrium conditions. In this 
scheme the functionsfij are not computed explicitly at equilibrium conditions, but 
are represented by a two-term expansion in that parameter ci , which tends to the 
equilibrium value. In order to calculate this parameter a finite-difference formula is 
derived which ensures stability of the computations both near to, and far from, 
equilibrium. 

The given numerical method has been applied in [1 I] for the solution of the 
problem of supersonic three-dimensional flow about a blunt-nose inverted cone 
set at an angle of attack in a stream of oxygen in the presence of nonequilibrium 
dissociation. We have considered the case when the internal degrees of freedom 
were in a state of equilibrium, and there was no ionization. The kinetic equations 
in these computations were assumed to be the same as those in [8]. 

The calculations were carried out for bodies which have as the nose part a 
sphere with radius rB = 1 m and as the aft part a circular inverted cone with a semi- 
apex angle 0, . We present some numerical results for the case when the undisturbed 
nondissociating stream has a pressure pm = 0.001 atm, a temperature T, = 288°K 
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and a Mach number Mm = 10 (corresponding to the free-stream velocity 
V, = 3236 m/set). All the functions in the following graphs are dimensionless; 
the radius rB , the density pm , the velocity V, and the gas constant of nondisso- 
ciating oxygen are taken as the reference quantities. 

The numerical solution has been obtained using nine meridian planes of inter- 
polation in the region 0” < $ < 180”. In addition, the solution with five planes 
of interpolation has been calculated-the corresponding data are shown by crosses 
in the graphs and they are in good agreement with the basic solution. 
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FIG. IO. Temperature distribution on blunt-nose inverted ccmes at angle of attack in super- 
sonic stream of nonequilibrium dissociating oxygen. 
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For comparison, the flows of a perfect diatomic gas have been calculated for the 
same blunt-nose inverted cones at the Mach number ikf, = 10. The analysis proves 
that the nonequilibrium dissociation essentially at&&s the temperature distribution, 
and has little influence on the pressure distribution. In Fig. 10 the temperature 
distribution along the windward (1,4 = 0’) and leeward (# = 180“) body generators 
are given for two blunt-nose inverted cones 0, = 10” and 0, = 30”, and for a 
blunt-nose cylinder 0, = 0” at angle of attack 01 = 10”. The solid lines correspond 
to the flow with nonequilibrium dissociation and the dashed lines correspond to 
the flow of a perfect gas. The right-hand parts of these curves are related to the 
conical surface of the body. In the vicinity of the aft point of the body there is a 
strong retardation of the flow accompanied by an increase in temperature and 
pressure. 

FIG. 11. Concentration distribution across shock layer on blunt-nose inverted cones at 
angle of attack in supersonic stream of nonequilibrium diwciating oxygen. 

Fig. 11 shows how the mass concentration of atomic oxygen c varies across the 
shock layer, depending on the variable 5 for a series of values of $ and 9 = 0”. 
These data are drawn for inverted cones with semiapex angles 0, = 10” (dash- 
dotted line) and 0, = 30” (solid line) at angle of attack OL = 10”. One can see that 
the concentration proves to be practically frozen on the whole conical surface of 
the body (5 = 0). 

Finally, the graphs of the coefficient of normal force C,, and of the coefficient of 
longitudinal moment C,, referred to the dynamic head and the maximum 
cross-section area of the body, are plotted in Fig. 12 for the angles of attack 
cx = 10” (solid line) and OL = 15” (dashed line). For comparison, the analogous 
data for the same bodies in the case of a perfect gas arc depicted by circles and 
triangles. It is clear that a nonequilibrium dissociation influences the aerodynamic 
coefficients very little, since its effect upon the pressure distribution on the body 
surface is small. 



586 CHUSHKIN 

The above calculations of nonequilibrium three-dimensional supersonic flows 
maintain the computational efficiency of the scheme proposed even in the case of 
bodies with a curvature discontinuity and large gradients of gasdynamic functions. 

Fro. 12. coefficient of normal force and coefficient of longitudinal moment for blunt-nose 
inverted cones at angk of attack in supersonic stream of nonequilibrium dissociating oxygen. 

1. K. I. BABENKO, G. P. V- A. N. L~uawov, AND V. V. RUSANOV, “Threedimen- 
sional Flow about Smooth Bodies in Ideal Gas,” Nauka Pub., Moscow, 1964. 

2. P. I. 0wsHKIN AND v. v. SH -ov, Znzh. fi.z. Zh. 3 (1960), 88-94. 
3. 0. M. B I?unsmKovsKu AND P. I. CHUSHRIN, Zh. Vychil. Mat. Mat. Fiz. 2 (1962). 731-759. 
4. 0. M. BE LonmKovsKu AND P. I. tZmmmcm, in “Basic Developments in Fluid Dynamica,” 

(M. Holt, Ed.), Vol. 1, pp. 11-126, Academic Press, New York/London, 1965. 
5. P. 1. cHusIuuN, Fiz. Goreni>a Vzfyva (1%9), 230-235. 
6. P. I. C~BHKIN, Zh. Vychisl. Mat. Mat. FFz. 9 (1969), 1367-1376. 
7. 0. N. KATSKOVA AND P. I. -, Zh. Vychid. h&at. Mat. fiz. 5 (l%S), 503-518. 
8. 0. N. KMSKOVA AND P. I. CHusmar, Zh. Vychid. Mat. Mat. I?&. 8 (1968). 1049-1062. 
9. P. I. m, in “w in Aeronautical Scii,” (D. Kiichemann, Ed.), Vol. 9. 

pp. 41-122, Per8amon, London/New York, 1968. 
10. P. I. ChXWlUN, Method of &arac&stics for thrcsdimmsioaal supersonic flows, Vych. 

Tsentr Akad. Nauk SSSR, Moscow, 1968. 
11. 0. N. RA’IXKOVA AND P. I. cBimma~, zzv. Akad. Nauk SSSR, Mekh. Zhid. Guza No. 2 

(1970), 182-184. 


